Katharina Strub
Katharina Strub was a Professor at the Department of Cell Biology, University of Geneva. Prof. Strub is a specialist in protein translation and her research focused in particular on the mechanisms that govern protein sorting and trafficking in the cell.
Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits. Ivanova E, Berger A, Scherrer A, Alkalaeva E, Strub K. Nucleic Acids Res. 2015
Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation. Bousset L, Mary C, Brooks MA, Scherrer A, Strub K, Cusack S. RNA. 2014
Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K. Nucleic Acids Res. 2014
Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Lakkaraju AK, Thankappan R, Mary C, Garrison JL, Taunton J, Strub K. Mol Biol Cell. 2012
Multiple Roles of Alu-Related Noncoding RNAs. Berger A, Strub K. Prog Mol Subcell Biol. 2011
An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. Castelnuovo M, Massone S, Tasso R, Fiorino G, Gatti M, Robello M, Gatta E, Berger A, Strub K, Florio T, Dieci G, Cancedda R, Pagano A. FASEB J. 2010
Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein. Mary C, Scherrer A, Huck L, Lakkaraju AK, Thomas Y, Johnson AE, Strub K. RNA. 2010
Structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle. Brooks MA, Ravelli RB, McCarthy AA, Strub K, Cusack S. Acta Crystallogr D Biol Crystallogr. 2009
Characterization of APOBEC3G binding to 7SL RNA. Bach D, Peddi S, Mangeat B, Lakkaraju A, Strub K, Trono D. Retrovirology. 2008
SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K. Cell. 2008
Useful 'junk': Alu RNAs in the human transcriptome. Häsler J, Samuelsson T, Strub K. Cell Mol Life Sci. 2007. Review.
Inefficient targeting to the endoplasmic reticulum by the signal recognition particle elicits selective defects in post-ER membrane trafficking. Lakkaraju AK, Luyet PP, Parone P, Falguières T, Strub K. Exp Cell Res. 2007 Feb 15
Alu elements as regulators of gene expression. Häsler J, Strub K. Nucleic Acids Res. 2006;34(19):5491-7. Epub 2006 Oct 4. Review. Erratum in: Nucleic Acids Res. 2007
Alu RNP and Alu RNA regulate translation initiation in vitro. Häsler J, Strub K. Nucleic Acids Res. 2006
Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain. Huck L, Scherrer A, Terzi L, Johnson AE, Bernstein HD, Cusack S, Weichenrieder O, Strub K. Nucleic Acids Res. 2004
Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition. Terzi L, Pool MR, Dobberstein B, Strub K. Biochemistry. 2004
Towards the structure of the mammalian signal recognition particle. Wild K, Weichenrieder O, Strub K, Sinning I, Cusack S. Curr Opin Struct Biol. 2002. Review.
Hierarchical assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O, Stehlin C, Kapp U, Birse DE, Timmins PA, Strub K, Cusack S. RNA. 2001
Structure and assembly of the Alu domain of the mammalian signal recognition particle. Weichenrieder O, Wild K, Strub K, Cusack S. Nature. 2000
The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. Strub K, Fornallaz M, Bui N. RNA. 1999
New insights into signal recognition and elongation arrest activities of the signal recognition particle. Bui N, Strub K. Biol Chem. 1999. Review.
Identification of a minimal Alu RNA folding domain that specifically binds SRP9/14. Weichenrieder O, Kapp U, Cusack S, Strub K. RNA. 1997
The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. Birse DE, Kapp U, Strub K, Cusack S, Aberg A. EMBO J. 1997
Mutational analysis of the protein subunits of the signal recognition particle Alu-domain. Bui N, Wolff N, Cusack S, Strub K. RNA. 1997
A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Thomas Y, Bui N, Strub K. Nucleic Acids Res. 1997
The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Bovia F, Wolff N, Ryser S, Strub K. Nucleic Acids Res. 1997
The signal recognition particle and related small cytoplasmic ribonucleoprotein particles. Bovia F, Strub K. J Cell Sci. 1996
Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. Doublié S, Kapp U, Aberg A, Brown K, Strub K, Cusack S. FEBS Lett. 1996
Crystallization and preliminary crystallographic analysis of the signal recognition particle SRPphi14-9 fusion protein. Birse DE, Doublié S, Kapp U, Strub K, Cusack S, Aberg A. FEBS Lett. 1996
A two-step recognition of signal sequences determines the translocation efficiency of proteins. Belin D, Bost S, Vassalli JD, Strub K. EMBO J. 1996 Feb 1
The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs. Bovia F, Fornallaz M, Leffers H, Strub K. Mol Biol Cell. 1995
The heterodimeric subunit SRP9/14 of the signal recognition particle functions as permuted single polypeptide chain. Bovia F, Bui N, Strub K. Nucleic Acids Res. 1994 Jun 11
An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Poritz MA, Bernstein HD, Strub K, Zopf D, Wilhelm H, Walter P. Science. 1990 Nov 23;250(4984):
Assembly of the Alu domain of the signal recognition particle (SRP): dimerization of the two protein components is required for efficient binding to SRP RNA. Strub K, Walter P. Mol Cell Biol. 1990 Feb;10(2):
Isolation of a cDNA clone of the 14-kDa subunit of the signal recognition particle by cross-hybridization of differently primed polymerase chain reactions. Strub K, Walter P. Proc Natl Acad Sci U S A. 1989
Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P. Nature. 1989 Aug 10;340
Human SRP RNA and E. coli 4.5S RNA contain a highly homologous structural domain. Poritz MA, Strub K, Walter P. Cell. 1988 Oct 7;55(1):4-6.
Analogues and derivatives of tenoxicam. 1. Synthesis and antiinflammatory activity of analogues with different residues on the ring nitrogen and the amide nitrogen. Binder D, Hromatka O, Geissler F, Schmied K, Noe CR, Burri K, Pfister R, Strub K, Zeller P. J Med Chem. 1987 Apr;30(4):678-82.
Genetic complementation in the Xenopus oocyte: co-expression of sea urchin histone and U7 RNAs restores 3' processing of H3 pre-mRNA in the oocyte. Strub K, Birnstiel ML. EMBO J. 1986 Jul;5(7):1675-82.
Transcription termination and 3' processing: the end is in site! Birnstiel ML, Busslinger M, Strub K. Cell. 1985 Jun;41(2):349-59. Review.
The cDNA sequences of the sea urchin U7 small nuclear RNA suggest specific contacts between histone mRNA precursor and U7 RNA during RNA processing. Strub K, Galli G, Busslinger M, Birnstiel ML. EMBO J. 1984 Dec 1;3(12):
Transcription of a cloned Xenopus laevis H4 histone gene in the homologous frog oocyte system depends on an evolutionary conserved sequence motif in the -50 region. Clerc RG, Bucher P, Strub K, Birnstiel ML. Nucleic Acids Res. 1983 Dec 20